Open-Apple

Releasing the power to everyone.

ISSN 6854017
newstand price: $2.00
photocopy charge per page: $015

Miscellanea

Am Rescune Rowtime comes to us by a long and drcuitous
route bulletin boards and user group newsletters. We've tested it
and checked it out with its originator, Michael Wilks, author of Applied

Engineering's Super AppleWorks Desktop Expander Utitity

The trick is useful if AppleWorks hangs while you have unsaved files on the
desktop. It doesn't ALWAYS work, so don't depend on it completely. The
routine was developed to speed testing of the deskiop expander. When the
routine does work, the only thing you should do is save what you were
working on. Then reboot Appletiorks and reioad your files.

When AppleWorks seems to hang, first wait for a few minutes. If the last

command you gave was to remove or delete something, this can take awhile
onan desktop.
If nothing happens after a reasonable amount of time and you are
convinced that AppleWorks is all twisted up in its own underwear, press
controlreset until you break the knot and get into the Monitor. Reset will
switch the screen to 40 columns and you will have an asterisk prompt on
your screen. Then enter:

ce73:e
3 control-P

select bank @ on blg memory cards
turn on 80-coluans

Note: if this doesn’t put you In B0-columns, then:
FFS36
3 control-P

If you can’t get into B@-columns, you'll have to reboot.

2F0:2C 83 Ce 2C 83 C@ 4C 33 1@
*66

At this point you will be back to the AppieWorks main menu with your files
intact. The choices on the main menu may be numbered if so,
simply choose another menu (Add Files will do) and escape back to the main
menu.

Remember, do nothing but save your files. For safety sake, save themona
different disk from the one you have been using—don't risk destroying your
most recent back-ups. Then reboot and reload.

The AppleWorks User Groump, mentioned here last August (page 61), has
moved to Colorado. The group maintains a dearing
notes, reviews, and public-domain utilities for
they have 28 disk sides of stuff available for $3 per floppy (2 sides) or $7.50
per 3.5" disk (5 sides). The group also supports a bulletin board in Denver
(303-756-5222) and is starting an AppleWorks discussion section on GENIE.
For more information, send a stamped, seif-addressed envelope to The

User Group, PO. Box 24869, Denver, CO 80224.

Macros amd mouse come to AppleWorks in Beagle Bros'
newest offering, Macrolorks, by Randy Brandt. ($34.95 from Beagle Bros,
3990 Oid Town Ave, San Diego, CA 92110). A "macro” allows you to enter a
long string of characters or keysiroke commands with a “single” keystroke.

(Those are eights, not bees.)

With MacroWorks, this singie keystroke is a combination of the solid-apple
key and just about any of the other keys on the keyboard.

Any sequence of keystrokes you enter 5o often as to be bothered by the
idea of having to type it is a good candidate for macrification. Your name and
address, the commands for printinga document, the keystrokes that save all
the files on the desktop, the keystrokes for inserting a new month in a
spreadsheet, the keystrokes for recording a dues payment from a member
of your Nash Rambier User Group, the keystrokes for writing letters to your

The package comes with a set of macros. These are most
useful in the word-processing module but will work in any of the three
Appleworks programs. You can use some or all of these supplied macros
and you can write your own. The ten number keys, 0 through 9, can be
defined and redefined while you are using AppleWorks. These ten keys are
allowed macros of up to 70 keystrokes each.

Macros for other keys must be defined ahead of ime, using an AppleWorks
word processor file, and “compiled;” using the MacroWorks program. These
macros can be any —the onlylimit is that all of them put together can
take up no more than 4,095 bytes. One macro can call another. A macro can
even call itself. An word starter file, holding the
standard MacroWorks macros as well as comments and suggestions, is
included in the package.

Macroiorks mouse support allows you to use the mouse to select menu
items and to move the cursor around the screen in any of the three
Appietorks modules. By holding down the mouse button you can make the
screen saoll.

A number of other utility programs are induded in the package. One
allows you to re-write the AppleWorks help screens. You can replace
AppleWork's word processor-help screen with a helplul list of Macrolork's
built-in macros, or you can create screens to help you with your own macros,
or your assembler’s directives, or your familys birthdates, or any other
information you like.

The version of ProDOS supplied on this disk includes a selector
called Bird’s Better Bye, by Alan Bird, in place of Apple’s standard quit code.
This is a beautiful littie piece of work. When you quit from a ProDOS program
{from Applesoft you do this with the BYE command), Bird's quit code gives
you a list of the subdirectories and system programs on the current disk
(rather than the standard ENTER PREFX rigmarole). You can scroll through

2.34 Open-Apple

the list and select the program you want to execute next by pressing Return.
Ifyou select a subdirectory, its contents will be displayed. If you press escape,
the program switches to another volume. By repeatedly pressing escape you
can flip through all the volumes that are online. The only limitation of this
program is that it won't list or run Applesoft programs for you—it can only
getyou into system programs such as Basic.system. The big advantage it has
compared to other program selectors, however, is that you don't have to
configure it ahead of time—~you can use it to find and start any system
program In any subdirectory your computer can access.

MacroWorksworks with all but the earliest versions of Applied Engineering’s
and Checkmate Technology's desktop expansion software. It does not,
however, work with Pinpoint. It also doesn’t support AE's printer buffer (no
big loss —software-based printer buffers have never done anything for me
but eat my files).

Bros sent some in statistics derived from the

first 500 MacroWorks registration cards it received.

Par cent of Macrokorks buyers using:

large RAM cards
Applied Englneering 6863
all other 1%

65%

sodea 5
souUse 52%
color monitor 35%
clock k]
UniDlisk 3.5 2ex
hard disk 12%

Sider 60%

all other 43

Earty MacroWorks buyers are not representative of all Apple owners.
Members of this group likely own more peripherals than the average Apple
user. However, the proportions of peripherals owned are probably indicative
of what is happening in the Apple world.

Two numbers stand out. First, large memory cards are by far the best
selling peripherals on this list and Applied Engineering is by far the
dominant supplier. Now you know how the company affords all those ads in
the Apple magazines.

Second, the UniDisk 3.5 has quickly achieved a greater penetration than
all hard disks put together, even though Apple’s marketing wizards gave it
the same name as their 5-1/4 inch drive, priced it about the same as a 10-
megabyte Sider, and have refused to fix its major bug, which makes the write-
protection tab on 3.5 inch disks dangerous to use (January 1986, page 98).
Apple has known about the bug since before the UniDisk was released but
has given absolutely no indication that it intends to fix it.

The UniDisk 3.5 has managed to overcome Apple’s bureaucratic naming,
pricing, and updating policies only because it is a wonderful little device.
After using a couple of them for several months | have to admit they are
quiet, rugged, and have lots of capacity. | hereby take back all the snotty
comments | made about these drives in October (page 73), although | still
think Apple was stupid for not building in DOS 3.3 support.

Hard drives have two advantages over the UniDisk — speed and maximum
file size. Their disadvantages are that they are noisier, less reliable, and you
can't remove the disk.

The speed advantage of hard disks is evaporating, however, because of all
those RAM cards. A RAMdisk is faster than a hard disk, and, if backed up by
batteries or an uninterruptable power supply, just as reliable. This leaves
hard disks with just one advantage — the ability to hold very large files. You'll
see that advantage melt away during the next couple of years as RAM prices
continue to fall (more slowly than in recent months, perhaps, because of the
strength of the Japanese Yen, but fall they will). The fastest, most reliable
mass storage now available for the Apple Il is a combination of an
electrically-backed-up RAMdisk and a UniDisk 3.5.

Until recentlty RAMdisks weren't widely used in the Apple world for two
reasons. One was The second was that most of the available RAM
cards became RAMdisks only with the help of RAM-based software patches
and additions to the operating system. Apple crushed the second problem
last fall with the introduction of its RAM expansion card, which included a
RAMdisk driver in ROM on the card, where it couldn't be stepped on or

otherwise destroyed.

Row Applied has just an imcredible boost to
RAMdisks with its introduction of the RamFactor card. This card uses a
standard slot, like Apple’s. However, it has twice as much ROM as Apple’s
card, which gives its RAMdisk many additional abilities. Like a Sider hard

Vol.2.Ne.§

drive, it is recognized as a storage device by ProDOS, DOS 3.3, Pascal. and
CP/M. Like a Sider, the device can be partitioned, with certain segments of
the space allotted to each operating system. With one megabyte of memory
and a $179 battery back-up option, the card retails for $568, exactly the same

as a UniDisk 3.5. It can be expanded up to 16 megabytes. The battery back-
up option allows you to leave files on the card while the computer is tumed
off.

1 think the introduction of this card marks the peak of auxiliary-siot
schemes for adding memory to Appie lis. Applied Engineering has modified
its AppleWorks desktop expansion software so that it works with RamFactor
—this software has been the major reason for getting AL's auxiliary-siot
based card in the past. (AE's AppleWorks desktop expander even works on
an Apple iI-Plus with RamFactor and an 80-column card). The only
disadvantage of the RamFactor card is that it requires a standard siot.

The lic—Apple Color Monitor interferemce problem (February. page
2.8; April, page 2.23) made it to “read and post” service-notice status at
Apple dealers as of May 1 As mentioned here in April. the problem is a
missing shield on some lic disk drives. Apple dealers are supposed to install
a shield as a warranty transaction if your lic is missing it The same notice
says that lic stand-alone power supplies with date codes prior to 4584 (A5t
week of 1984) may induce waviness in the color monitor. Upcoming detalls
from Apple will tell your dealer how to get you a replacement.

The Apple Il Plus/Ile Troubleshooting and Repair Guidets in its third
printing already, though | just found out about it (the copyright date is 1984).
Its by Robert C. Brenner and is the first Apple repair guide for non-
technicians that I've run into. It has a great deal of general information on
topics such as “Steps to Successful Troubleshooting” “Where Does
Interference Come From?,” and “Removing Solder.”

But most importantly, it has page after page of very specificinformation on
exactly which chips are suspect when your Apple suffers from various
combinations ofill symptoms. It gives very detailed, conservative instructions
on how to proceed if you want to make your own repairs. Anyone with
responsibility for several Apples who's willing to use a chip puller should own
this book. it was published by Howard W Sams and Co and has a list price of
$19.95; you can get it by mail order from S-C Software (P.O. Box 280300,
Dallas TX 75228 214-324-2050) for $18 pius $2 shipping.

Lost in the private domain. Has Apple ever released an Applesoft
support package for double-high resolution graphics? Open-Apple subsaiber
Bruce Ristow points out that it has — hidden away on a disk that came with
Apple’s auxiliary-slot RGB card, which is no longer sold. The package
includes 18 ampersand commands for drawing and for printing 80-column
text in double-high-resolution.

Also missing from Apple’s most recent price lists is the DOS (3.3)
Programmer’s Toolkit. Now that Applie is listening to user groups, pressure
from the right people might pop this stuff into the groups’ public domain
software libraries. Without the pressure, the stuff is totally lost —it's illegal to
make copies and impossibie to buy them.

Apple Documentation Update: A new packet of technical notes was
published by the Apple li technical support team in early May. Here are the
new items for those of you who want to update our March list of Apple
documentation (page 2.11):

Technical Notes--January-Rpril 1986
ProD0S: 17
Ile hardware: 1 througn 8
Ilc hardware: 1 througn 4
Memory expansion card: 1
Smartport {protocol converter:: 1 througr 2
Jnilisk 3.5: 1 througn 4
Apple 11 misc: 1 througr 6

Most of these notes are pretty esoteric. Apple Il Miscellaneous Technical
Note #3, however, raises a problem at least a few Open-Apple readers have
probably run into. Apple has recently discovered a bug in the Pascal protocol
firmware on the Super Serial Card. The bug surfaced with the combination of
Apple’s Access Il communications software, the UniDisk 3.5, and the Super
Serial Card.

The problem has to do with the $C800-SCFTT ROM space that peripheral
cards are supposed to share. The hardware part of the protocol is that each
card should tum off its $C800 ROM whenever byte $CFTT is accessed and
turn its $C800 ROM back on when its slot-dependent ROM space is accessed
(slot-dependent ROM is at $CsXX—each slot gets $100 bytes in the range
from $C100 to $C7FT). The software part of the protocol is that all uses of a
card’s $C800 ROM should be vectored through the card's siot-dependent

Downloaded from www.Apple2Online.com

Jume 1966

ROM and that the firmware on the card should tickle $CFFT before jumping
80 e $C800 area.

The Pascal entry points on the Super Serlal Card; however, jump right into
e $CB00 ROM without referencing $CFFF. Apparently the bug hasn't
swsfiaced before because the Super Serial Card could overpower most other
s wirose ROM was still on. The UniDisk 3.5 card, however, uses the same
chips o “drive the bus™ as the Super Serial Card, and neither can overpower
e cther

Thmss, Pascal and assembly language programs that intend to use Pascal
==ayy points with groups of cards that could include the Super Serial Card
sheuld do so something like this:

» character out, status request nuaber, etc.

> s s=slot nuaber of card (required by Pascal entry point protocol)
2> siet - -

b I Wead WSLOT=$7F8, used by interrupt routines to fix $COOO ROM

3 XFFF turn of f all SCO00 ROMs

5 er:r Pt go to entry point (this turns the card's SCBO0 ROM back on)

Since Apple has promoted the Super Serial as a model that third-
party developers should use when designing for slot-based cards,
s likely that many third-pasty cards share this bug However, the more
commonly-used entry point on the card — the one Applesoft programs use
—tickles $CITT as it is supposed to and doesn't present a problem. The
Pascal entry points have some advantages for assembly language pro-
grammers, however, and have been getting more use by developers recently.

Picking Up
Applesoft

There are two situations in which it can be handy to get a list of all the
variables a program is using and their current values. One is during program
debugging. Scanning the values of a program’s variables after a program-
breaking error can be an immense help in finding the bug.

The second is when trying to figure out how programs that use ProDOS
VAR files work. Apple's new system utilities program, for example, makes
heavy use of VAR files. It's very helpful to have an easy way to find out what
variables are in such a file and what their values are.

There are a couple of commerical programs available that, as one element
of their many abilities, can display current variables and their values. One is
Beagle Bros’ Double-Take, by Mark Simonsen ($34.95, 3990 Oid Town Ave,
San Diego, CA 92110) and the other is Glen Bredon's ProCMD ($20, 521 State
Rd, Princeton, NJ 08540). These are assembly language packages that are
neatly hidden away from the Applesoft program you are working on.

Neither of them can dump the values in amays, however. And neither of
them teaches us as much about Applesoft as writing our own variable reader
would.

As it happens, most of the background information needed to write such a
program appeared in Open-Apple in April, in the article about using
Applesoft with a RAMdisk (pages 2.17-2.21). Just for fun, let’s build on that
article and write a program called VAR READER, that will work under either
DOS 3.3 or ProDOS.

I've reprinted April's Figure 1 to jog your memory about Applesofts
memory. Applesoft reside in the area from $800 (2048) to $9600
(38400) and are split into four major parts—the program image itself, a
table of simple variables, a table of array variables, and a string storage area.

The variable tables hold the name of each variable and, in the case of
numeric variables, the current value. For string variables, the table holds the
length of the string and a pointer aimed at the string itself, which is usually
stashed away somewhere inside the string storage area.

Reading the variable tables should be quite easy— all we have to do is scan
them from beginning to end, dig out each variable’s two-letter name, and talk
Applesoft into displaying the current value.

For example, each item in the table of simple variables is seven bytes long,
The first two bytes hold the two letters of the variable’s name. By using a FOR
loop with a step of seven, you can scan the table from beginning to end, pull
out all the variable names, and determine what type each variable is. Theniit's
simply a matter of printing its value.

Open-Apple 235

Since Applesoft keeps the address of the tables in standard two-byte
assembly language pointers (with the high byte last), let's begin by devisinga
two-byte PEEK function that will retum the value held in two-byte pointers.
How about:

37700 DEF FN PX(ADR)=PEEK(ADR) +PEEK(RDR+1)*256

This statement defines a function you can call with such syntax as V=N
PK(X), or PRINT FN PK(X), where X can be a number or a formula that specifies
the address of the first byte of the two-byte pointer you want to examine. The
function retums the address stored in that two-byte pointer. (Note the
difference between the address of the pointer, which is X in these examples,
and the address the pointer is aimed at, which the function returns.) Once
the PK function is defined, we can find the beginning and end of the simple
variable table and scan it like this:

37811 TS=FN PX(105) : REM TS = simple variable table’s starting adr
37812 TE=FN PX(107)-1 : REM TE = table’s ending adr
37829 FOR ADR=TS TO TE STEP ? : REM scan 7-byte simple variables

As we scan the table, we want to find out the name and type of each
variable. From April’s article (page 2.19), we know that combinations of high-
and low-ASCII characters are used to designate whether a variable is floatinig
point, integer, a string, or a function.

To determine a variable’s type, we can let T=0 as we start to examine it. If
the first character is high-ASCII, we'll add 1 to T. If the second character is
high-ASCII, we'll add 2 to T. Thus, T will end up 0 for low-low (floating point), 1
for high-low (functions), 2 for low-high (strings), and 3 for high-high
(integers). Here's some definitions that will allow us to tum T into the normal
variable identifier. They would appear at the beginning of our program, after
the PK function definition:

37799 TYPES(9)=" - : REM real
37791 TYPES(1)="" : REM function
37792 TYPES(2)="3" : REM string
37793 TYPES(3)="%" : REM Integer

And here’s a subroutine that actually digs out the name and type of the
simple variable stored at ADR.:

37960 REM * Read variable name and type *

37984 T=0

37985 C1=PEEK(AOR) : IF C1>127 THEN T=Tel : C1=Cl1-128
37986 C2:PEEK(ADR+1) : IF C2>127 THEN T=T+2 : C2:C2-128
37987 If C2=0 THEN C2=RSC({~ -)

37988 N$=CHRS(C1)+CHRS(C2)+TYPES(T)

37989 RETURN

Text Sarcen

stert of wriddies
CLOAER:)

Sieple veriodle 103-103, 030-03R
tedla

stert of eveys
VS
07-109, $a0-Gac

freey veriadle
tdle

end of veriadies
STRDD
100-110, $20-¢ag

Soaschet freo erce
(strings ovent-
usl iy cvarerite
this erce.)

End of slrings
FREVO®
1M1-112, F-90
Strinp sterepe oo

et of strings
FENBI2 CNIFER:)
113~-18, §72¢%

Stert of 0B
o uf.pln\.‘;
Appleselt Program * ¥ 9ea00,
Aree oldaiy.)

Heni ter

2.36 Open-Appic

From April's article we also know that if a variable has a one-letter name,
the second letter will be given the value $00 or $80. We need to change this to
ablank —this is the reason for line 987. Notice that if a character was in high-
ASCII, we subtracted 128 from it. This makes all characters low-ASCII for
simplicity later on.

Since FUNCTIONSs have no value associated with them, let’s filter them out
right away:

37822 : IF T=1 THEN PRINT “Function “iN$:” defined.” : NEXT

Now we have captured the variable name in N$; all we have to do is print it
and its associated value on the screen. PRINT N$:" = *; will get the name and
an equal sign up on the screen, but how to do we tell Appiesoft to print the
value of the variable in N$ rather than the value of N$?

In Logo this is no problem. Logo has a function called THING that returns
the value of a variable specified by another variable:

MAKE “X$ “CONFUSED?" The Applesoft equivalent is X$="CONFUSED?”

MAKE “N$ “X$ is N$="X$~
PRINT THING :N$ (No Rpplesoft equivalent available.)
CONFUSED?

Of course, in Logo this whole issue is of no significance anyhow—Logo
has a built-in command, PONS (print out names), that prints out all active
variable names and their values.

In Applesoft, there are two possibilities. We could poke the variable name
somewhere in memory and then write an assembly language routine that
would trick Applesoft into printing that value, or we could just poke the
variable name right into a PRINT statement in our m.

When a program POKEs changes into itself it becomes self-modifying.
Most disdain such programs. That alone is probably reason
enough to figure out how to do it

Again, the April issue (page 2.18) has all the information we need to find a
specific spot inside a program. For example, let's say the line we decided we
wanted to modify looked like this:

37824 : PRINT N$;” = “;XX$

The idea would be to overwrite the XX$ with the name of the variable we
really want to print. (At the moment the name of that variable is stored in N$.)

What we need is a subroutine that retums the beginning and ending
memory addresses of any line in memory. In April we leamned that the first
two bytes of each program line, as they exist in memory, point to the next
program line. The third and fourth bytes hold the line number of the current
line. Applesoft aims a pointer called TXTTAB ($67, 103) at the first byte of the
first line of the program. The last next-line pointer holds zeros. Thus:

37990 REM * Find line number L .

37994 ACL=FN PX(183) : REM address of current line, 103=TXTTR8
37995 ANL=FN PK(RCL) : REM address of next line
37996 IF ANL=0 THEN PRINT “There’'s no line ~:L:~
37997 IF L=FN PX(RCL+2]} THEN RETURN

37996 ACL=ANL : GOTOD 37995

Line 994 gets the address of the first program line out of TXTTAB. Line 995
gets the address of the second program line out of the first one. Line 996
looks to see if we've reached the end of the program; if so, we print an error
message and break the program with STOP. Line 267 looks to see if the line
number embedded in the current program line is the oite we re looking for. If
not, we make the next program line the current one and start over.

This subroutine retumns with the actual memory address of the specified
line in ACL and the address of the following line in ANL. In our current
situation, the three bytes we want to change appear at the end of a line. Thus
it's easiest to poke the changes in a few bytes below ANL.

Now let's put all this stuff together in one place — here’s the entire loop for
digging up the simple variable table. Note how line 824 is modified by line
823

in this progras.” : STOP

37810 REM * Display names and values of all simple variables #

37811 TS=FN PX(105) : REM TS = simple variable table’s starting adr
37812 TE=FN PX(107)-1 : REM TE = table’'s ending adr

37813 L=37824 : GOSUB 37999 : REM put address of line L in ACL and ANL

37828 FOR ADR=TS TO TE STEP ? : REM scan 7-byte simple variables
37821 : GOSUB 37980 : REM get nase and type of this variable
37822 : IF T=1 THEN PRINT “Function “;NS:” defined.” : NEXT
37823 : FOR I=1 T0 3 : POKE AML-5+1,ASC(MIDS(NS,1.1)) : NEXT
37824 : PRINT N$;” = “;XX$

37825 NEXT

Vol. 2, No. 5

Now that we have the simple variables taken care of, let's look at what kinds
of problems the amray variables pose. As | said earlier, neither of the two
commerical packages mentioned display the values of array variables,
although Bredon's does report the dimensions of all active arrays.

Admittedly, dumping the array variables is more difficult than dumping the
simple variables. The problem is that amays have no set number of
dimensions and no set number of elements per dimension. Any routine we
write has to be quite flexible.

On the other hand, however, one advantage of working with arrays is that
you can put most of an amay variable's name in a second variable. For
example, if A=1 and B=2, you can print the array element XX$(1.2) with the
statement PRINT XX$(A.B).

mpleson stores a pointer to the beginning of the amay variable table at

B ($6B, 107) and points just past where the table ends with STREND
($6D, 109), so finding the table is no trouble. However, as we saw in April, the
array table keeps getting moved to higher and higher addresses as new
simple variables are used. For each new simpie variable, Appiesoft has to
make room in the simple variable table. To do this, the array variable table
has to be moved.

Thus, before we bother to determine exactly where the array table is, it's
important that we activate all the simple variables that our array-dumping
routine will use. By sneaking a look ahead, | know what they'll be, so here's
how to find the array table (note that it's not necessary to reactivate the
simple variables that have already been used to dump the simple variable
table):

37911 R=0 : B=@ : C=0 : D=0 : £=0 : ND=0 : Nv=@ : D13="" : C23=""
37912 NV=FN PX(107) : REM array table’s start is Nex:t Variable
37913 TE=FN PX(109) : REM table’'s ending address

Unlike simple variables, which are always exactly seven bytes long, amray
variables can be just about any length. It depends how many dimensions the
armay has and how many elements are in each dimension.

Consequently, the third and fourth bytes of each array table entry hold the
distance to the next array variable entry. (The first two bytes hold the
variable’s name in the high/low-ASCI! code we've come to expect.) Line 922
uses ADR to point at the variable currently being worked on and advances NV
to point at the next variable:

37920 1F NV=TE THEN END : REM when there’s nc Nex: variatie, uit
37922 ADR=NV : NV=RDR + FN PX(ROR+2) : REM working pointer is ADR
37924 GOSUB 37980 : REM get name and type of variable at ROR

You'll find the number of dimensions in an array stored four bytes beyond
the start of the array's entry. Since most arrays have five or fewer dimensions,
and since our dump routine’s complexity increases with each dimension we
support, let's skip arrays with more than five dimensions, such as
A(0,0,0,0,0.0):

37930 ND=PEEK(RADR+4) : RE™ get Nusber of Dimensions for this array
37932 IF ND>S THEN PRINT “Array “iNS$;” has “;ND;:~ disensions.” : GOTO 37920

Now, consider for a moment the line we'll use to actually print an amray's
value. Again, because I've cheated and looked ahead, | know it will go
something like this:

Of course, we'll have to overwrite the XX$ at the end of this line with the
iclters of the array we are actually working on, and we'll have to overwrite the
(A.B.C.D.E) with the exact number of dimensions we have. For example, if we
Ih:gke Ii‘lkt\r/g:.iimension array named PA%, after overwriting line 970 it should

ike this:

PRINT NS(1):NS(2);NS(3):NS(4):NS(5):") = “ixx$(R,B,C.0.E)

PRINT NS(1):NS(2);NS(3)NS(4):NS(S);") = ";PRX(R,B)

That should be easy enough. Line 914 finds the addresses we need for
poking changes into line 970, line 940 pokes in the variable’s name, and
lines 941-949 plug in either blanks or commas and letters:

37914 L=37970 : GOSUB 37390 : REM get ACL and ANL of line 37979

37940 FOR I=1 TO 3 : POKE ANL-16+1,RSC(MIDS(NS,I 1)) : NEXT

37941 D13=CHRS(32) : D23=CHRS(32) : REM blank spaces
37942 IF NOD4 THEN D13="," : D23="E~

37943 POKE ANL-4,RSC(D1S) : POKE ANL-3,RSC(D23)
37944 If ND>3 THEN D1$="," : D2%="D"

37945 POKE ANL-6,ASC(D18) : POKE ANL-5,RSC(D23)
37946 IF ND>2 THEN D13=",~ : D23="C"~

June 1986

37947 POKE ANL-B,RSC(0183) : POKE ANL-7,RSC(D28)
37948 IF NOD1 THEN D1$=",~ : D23="B"
37949 POKE ANL-10,ASC(D1S) : POKE AML-9,RSC(D2S)

Now it's a simple matter of finding out how many elements each
dimension has and building a loop that will step through each element. The
number of elements in each dimension is stored beginning at byte 5 of the
array description. The final dimension s stored first. And, believe it or not,
these two-byte numbers are stored high-byte first—backwards from the
backward method usually used. Let's collect the number of elements in each
dimension in our own little array, D{):

37950 FOR I=1 TO ND
37952 D(1)=PEEK(ROR+3+(1%2))2256 + PEEK(ADR+4+(1#2))
37954 NEXT

The fact that we don't know how many dimensions the array has poses a
few problems in building a loop to print the array elements, but IF
statements can get around them:

37960 FOR I=1 T0 5 : NS(I)="" : NEXT : REM clear N$() array
37961 FOR R=@ TO D(ND)-1 : NS(1)=N$+~(~+STR$(R)

37962 : IF ND>1 THEN FOR B=0 TO D(ND-1)-1 : N$(2)=",“+STR$(B)
37963 :: IF ND>2 THEN FOR C=0 TO D(ND-2)-1 : N$(3)=","+STR$(C)
37964 ::: IF ND>3 THEN FOR D=8 TO D(ND-3)-1 : NS(4)=",“+STRS(D)

37965 :::: IF NOD4 THEN FOR Es@ TO D(ND-4)-1 : N$(S)=",“+STRS(E)
37970 ::::: PRINT NS(1):NS(2):NS(3);NS(4);N8(5);") = “:XX$(R,8,C,0,E)
37975 :::: IF NOD4 THEN NEXT

37976 ::: IF NDDI THEN NEXT

37977 :: IF NDD2 THEN NEXT
37978 : If NDD1 THEN NEXT
37979 NEXT : GOTO 37920: REM do next entry in array table

So much for dumping arrays.

The reason this program has numbers in the 37700-37999 range is that if
you use it to debug your own programs you'll want it stowed away where it
won't interfere with the program you're working on. The easiest way to

is to type VARREADER into a word processor (the complete listing
follows this article) and then save it in a text file. When you need it to help
debug a program you are working on, EXEC it in while the program you are
working on is loaded. Then RUN your program until it crashes (or install a
STOP command to break it where you think you're having value trouble) and
enter GOTO 37700. (Don't RUN 37700; that will clear all your variables.)
VARREADER will then give you a list of all your active variables and their
values.

1f you want to read a ProDOS VAR file, EXEC in VARREADER, then enter
RESTORE pathname. This will load the VAR file into memory. Finally, enter
QOTO 37700 and the file will be listed. If you'd like a printed copy, just enter
PR#1 or whatever first. If you want to dump the listing to a file, put OPEN and
WRITE commands in lines 37701-37702 and add a CLOSE command before
the END in line 37920.

To test the program, | recommend you take a look at the VAR files on
Appie's ProDOS System Utilities disks. They are immense. Among other
things, they contain all the menus that appear in the system utilities
program. The advantage of using VAR files like this is that if you want to
translate a program into another (human) language, all you have to change
is the VAR file. The program itself can remain untouched.

Incidentally, creating a VAR flle is simple. Use a word processor to create a
list of variables and values that looks just like the one VAR READER prints. At
the top put the command NEW. At the bottom put the command STORE
pathname. Save all this in a text file, then EXEC it into memory. The EXEC will
create a new VAR flle with all the variables and values in your list

VARREADER has one significant problem. It damages the values in
variables that have the same name as the variables it itself uses. This is a
direct consequence of its being written in Applesoft rather than assembly

Assembly language would also be faster and could be much more

t. On the other hand, fewer readers would be able to
follow the logic of the program, it would become too long to print here, and it
would take too long to write.

We can get around the problem by inserting a section at the beginning of
the program that looks for any pre-existing variables that have the same
names as the ones well be using, If we find any, we can print out their values
before we tread all over them. Two long lines of dashes can be used to
separate these from the other variables—if nothing appears between the
lines you know that there are no variable-name conflicts. I've included lines
37710 through 37789 in the final program listing to take care of this
problem. If you are faced with typing in the program, you could leave these

Open-Apple 2.37
lines out and cut your typing time in half if you are prepared to deal with the

consequences.
Ifyou type in VARREADER and RUN it (not the normal operating procedure),
here's what you'll see:

Function PX dafined.
AD = 5270

1 =4

1S = 5263 A\
TE = 5297

0D (0)=0

0D (1)=11

0D (2)=0

(27 more lines of array variables follow)

Note that, since we started the program with RUN, these are all variables
used by VARREADER itself. Only those simple variables activated through
line 37812 show up in the display—line 37812 is where the end of the simpie
variabllmetableispinned down. Simple variables activated after that aren't

Unfortunately, lines 37740 through 37762 activate all the program's
variables —they show up every time. When examining variables, don:';:ty
VARREADER's mixed up with your own.

Just for fun, enter enter GOTO 37700 immediately after RUNning
VARREADER. Now all of VARREADER's variables show up between the two
dashed lines — the values shown with them are left over from the RUN. When
these same variables appear after the second dashed line, the values shown
are those of the current trod.

Here's the complete listing:
| R ———
. VAR .READER
N .
* : by Tom Weishaar
* June 1986
L :
: 2 public domalin progras

37700 DEF FN PX(ADR)=PEEK(RDR)+PEEK (ROR+1)%256
37705 REM Lines 37710 to 37789 optional, see text

37710 PRINT “cccenemmmmen i eeea s -
37711 IF A D8 THEN PRINT "R =
37712 IF B D0 THEN PRINT "B =
37713 IF C D9 THEN PRINT C =
37714 IF D D8 THEN PRINT D =
37715 IF £ D8 THEN PRINT "E = *;E
37716 IF 1 D0 THEN PRINT *1 =
37217 IF L D0 THEN PRINT “L =
37718 IF T >0 THEN PRINT *T =

37720 IF CL>@ THEN PRINT “C1 = *;C1
37722 IF C2>® THEN PRINT “C2 = *;C2
37722 IF ND>® THEN PRINT “ND = “;ND
32723 IF NVD® THEN PRINT "NV = NV
37724 1IF TE>® THEN PRINT “TE = “;TE
37725 IF TS® THEN PRINT “TS = ~;TS
37726 IF ACO® THEN PRINT “ARC = “;AC
37727 IF ADX® THEN PRINT “RD = ~:RD
37728 IF AND® THEN PRINT “AN = “:AN

37730 IF LEN(D15)>® THEN PRINT -D1$ = ~;D1s
37731 IF LEN(D28)>8 THEN PRINT ~D2$ = ~:028
37732 IF LEN(NS) D8 THEN PRINT “N§ = ~:NS

37740 FOR [=1 TO S
37741 : IF D(I) > @ THEN PRINT “D(":I;7) = ~:0(I)
37742 NEXT

7750 FOR [=1 10§
37751 : IF LEN(NS(1)) > @ THEN PRINT “N$(~:137) = ~;Ns(I)
37752 NEXT

37768 FOR 1=0 T0 3
37761 : IF LEN(TYS(I)) D> @ THEN PRINT -TY$(~:1;*) = ~;Tvs(I)
37762 NEXT

37789 PRINT “+eneommmmmmmmme e e cnenees ?

37799 TYPES(8)=" ~ : REM real
37791 TYPES(1)="" : REM function

vl 1
UniDisk 3.5 * 3+ CPM

| have an Apple lic with an external disk lic and a
UniDisk 3.5.1'm considering buying a second UniDisk
and | wondered if 1 could use all three of my extra
drives at once.

Do you know of any way to use the UniDisk 3.5 with
CP/M?1 purchased Nordic Software’s Proftx(December
1985, page 93), and it makes the 3.5 inch drives work
terrifically with DOS 3.3. Is anything like that available
for CP/M?

Laird Malamed
Los Angeles, Calif.

On an Apple lic, up to two UniDisk 3.5s and a
single 5-1/4 inch drive can be daisy-chained together.
The 5-1/4 inch drive must be at the end of the chain.
The UniDisk 3.5s act as if they are connected to slot
5, the 5-1/4 inch drive appears to be in slot 6, drive 2.

Unfortunately, this doesn't work on the lle. The
problem s that, unlike the case of the lic, there could
already be a 5-1/4 inch drive actually connected to
siot 6, drive 2. Consequently, the UniDisk 3.5 controlier
card doesn't allow 5-1/4 inch drives to be in the dalsy
chain.

Applied Engineering Is reportedly working on a
UniDisk 3.5 driver for the CP/M work-alike it provides
with its Z-80 products. | don't know of any other
work in progress along these lines—perhaps our
readers can help.

UniDisk 3.5 eject

Is there a software command to cause a UniDisk
3.5 drive to eject the disk? | have a UniDisk 3.5 and
am very happy with it. | think one advantage it has
over hard disks is that it is simpler both electronically
and mechanically and therefore less vulnerable to
breakdowns. It's also LOTS quieter.

Stephen Bach

Scoisville, Va.

Yes, there is a “Smartport” or “protocol converter”
call for ejecting a 3.5 inch disk. Some month soon
we're going to look at the protocol converter in

detall, but the eject-a-disk question keeps coming up
50 Il show you how to do that right now:

100 REM *# Eact 3.5 inch UniDisk ##

110 SLOT=5 : DRIVE=1

120 C3="300:20 €0 C5 64 0 03 B0 11 03" : GOSUB 500
121 C3="309:60 03 81 OF 03 64 00 00 00~ : GOSUB 500
130 POKE 770, SLOT+192 : REM Cslot to $382

131 POKE 779, DRIVE : REM drive to $308

140 CALL 768

150 ERR=PEEK(78S)

160 IF ERR=@ THEN END

161 IF ERR=39 THEN PRINT “Eject failed.” : END

162 IF ERR=40 THEN PRINT “No device cncted.” : END

163 PRINT “Crror in eject listing.” : END

509 REM Lam technigue, space before and after N
501 C$=C$ + ~ N DIC6G"~

510 FOR I=1 TO LEN(CS)

512 : POKE S11+I, ASC(MIDS(CS,1,1))+128

514 NEXT

528 POKE 72,4 : CALL -144

530 RETURN

Vol. 2, No.5

The above program is for demonstration purposes
mostly; as written it's pretty siow. Those of you who
want more speed wouid probably like to see the
assembly language code embedded in the program
—and here it is:

EJECT
300:20 00 CS JSR DISPRTCH P Converter entry
03:04 .DA e coseand 4, ‘control’
304:08 93 .DA CMOLIST adr of comseand list
306:80 11 @3 STA ERR store error code
303:60 RTS (zero=no error)
CMoLIST
30AR:03 .0R 83 8 of items in cadlist
308:01 .DA m1 use 2 for arive 2
30C:0F 03 .DA CTRLLIST adr of control list
30E:04 .DA B4 ced 4, eject disk
CRTLLIST
0F:00 00 .DA 0000 8 of CTRLLIST bytes
ERR
311:00 .DR 809

The "dispatch” address on both the lle UniDisk 3.5
card and the lic 3.5 ROMS is $CsOD (s=slot the card is
in, which is 5 on the lic), however, you are really
supposed to find it by grabbing the value in $Cs/T,
adding three to it. and using it as an index from
$Cs00. Without adding three, incidentally, you'll get
the card’s ProDOS entry point.

Ifanervor occurs, the carry will be set and the error
number will be in the A register. If there is no error,
the carry will be dear and A will hold zero. The
important error codes to watch for are $27, FAILURE
TO EJECT, and $28, NO DEVICE CONNECTED. Most
other possible errors are related to invalid command
tables. Apple’s documentation doesn't say what
could cause a FAILURE TO EJECT error or what to do
about it If it happens.

The “device number” in the command list could
theoretically be something other than one for Drive

37792 TYPES(2)="3" : REM string
37793 TYPES(3)="%" : REM integer

37950 FOR 1=1 TO NO

37952 D(1)=PEEK(ADR+3+(192))9256 + PEEK(ROR+4+(192)}

37954 NEXT

37810 REM * Display names and values of all sieple variables *

37811 TS=FN Px(10S)
37812 TE=FN PX(107)-1 : REM TE = table’s ending adr
37813 L=37824 :

: REM TS = simple variable table’s starting adr

GOSUB 37990 : REM put address of line L in ACL and ANL

37960 FOR I=1 TO S : NS(I)="" : NEXT : REM clear N$({) array
37961 FOR A=® TO D(ND)-1 : NS(1)=NS+-(~+STRS(R)
37962 : IF NOD1 THEN FOR B=0 TO D(ND-1)-1 : N$(2)=",~+STR$(B)

37963 :: IF NDD2 THEN FOR C=@ TO D(ND-2)-1 : N$(3)=",~+STR$(C)

37820 FOR AOR=TS TD TE STEP 7 : REM scan 7-byte sisple variables
37821 : GOSUB 37980 : REM get namse and type of this variable
37822 : IF T=1 THEN PRINT “Function “;N$:~ defined.” : NEXT
37823 : FOR I=1 TO 3 : POKE ANL-S5+1,RSC(MIDS(NS,1,1)) : NEXT
37824 : PRINT N$;” = “:XX$

37825 NEXT

37910 REM * Display names and values of all array variables #
37911 A=0 : B=0 : C=@ : D=0 : €=0 : ND=0 : Nv=0 : D1$="" : D23=""
37912 NV=FN PX(107) : REM array table’s start is Next Variable
37913 TE=FN PX(103) : REM table’s ending address

37914 (=37970 : GOSUB 37990 : REM get ACL and ANL of line 37970

37920 IF Nv=TE THEN END : REM when there's no Next Variable, quit
37922 ADR=NV : NV=RDR + FN PK(ROR+2) : REM working pointer is RDR
37924 GOSUB 37980 : REM get name and type of variable at AOR

37930 ND=PEEK(ADR+4) : REM get Nusber of Dimensions for this array

37932 IF NO>S THEN PRINT “Array “iN$;” has “;ND;” dimensions.” : GOTD 37920

37940 FOR [=1 70 3 : POKE ANL-16+1 ,ASC(MIDS(NS,]1,1)) : NEXT

37941 013=CHRS(32) : D23=CHR$(32) : REM blank spaces
37942 IF ND>4 THEN D1$="," : 02%="C"

37943 POKE ANL-4,ASC(D1S) : POKE ANL-3,RSC(D23)
37944 IF NDD3 THEN D1$="," : 028="D"

37945 POKE ANL-6,RSC(D1S) : POKE ANL-5,RSC(023)
37946 IF NOD2 THEN D1%="," : 028="C~

37947 POKE ANL-B,RSC(D1S) : POKE ANL-7,RSC(028)
37948 IF ND>1 THEN D1$=",” : D23="8~

37949 POXE ANL-10,RSC(D1S) : POKE ANL-9,ASC{D2S)

37964 ::: IF NOD3 THEN FOR D=0 TO O(ND-3)-1 : N$(4)=",~+STR$(D)
37965 :::: IF NDD4 THEN FOR €20 TO D(ND-4)-1 : N$(5)=",~+STRS(E)
37970 ::::: PRINT NS(1);N$(2):NS(3):NS(4);N$(5):") = ~;Xx$(R,B,C,D.E)
37975 :::: IF NDD4 THEN NEXT

37976 ::: IF NDD3 THEN NEXT

37977 :: IF NDD2 THEN NEXT

37978 : IF NDDL THEN NEXT

37979 NEXT : GOTD 37920: REM do nex: entry in array lable

37980 REM * Read variabie name and type *

37981 REM # Tavarisble type .
37982 REM * N$=zvariable nase .
37983 REM
37984 T=0

37985 C1=PEEK(RDR) : IF C1>127 THEN TaTel : Cl1sC1-128
37986 C2=PEEK(ADR+1) : IF CD127 THEN T=T+2 : (2:(2-128
37987 IF C2=@ THEN C2sRSC(~ “)

37968 N$=CHRS$(C1)+CHRS(C2)+TYPES(T)

37989 RETURN

37990 REM * Find line nueber L *
37991 REM * ACL=address of current line #
37992 REM * ANL=address of next line .
37993 REM

37994 ACL=FN PX(103) : REM address of current line, 103=TXTTR8
37995 ANL=FN PX(RCL) : REM address of next line

3799 IF ANL=@ THEN PRINT “There's no line “;L;” in this prograe.”
37997 If L=FN PK(ACL+2) THEN RETURN

37998 ACL=ANL : GOTO 37995

: STOP

June 1986

1 and two for Drive 2 if other protocol converter
devices were dalsy-chained in between the computer
and the drives. Determining the actual device number
of each drive from within a program s falrly compli-
caled, however. Yet the ProDOS entry point on the
UniDisk 3.5 card uses slot and drive parameters
rather than a device number; the card figures it all
out somehow. Doesn't it seem like ProDOS itself
should support an eject-disk command? At the
moment, however, all the ProDOS kemel can tell a
device to do Is to read, write, report its status, and
format itseif.

ASCI Express V4.20

| have version 4.20 of ASCI! Express. | am using an
enhanced lle and | chose the "Apple lle” selection for
a “local console” when installing the program. It
works at 1200 baud with no problems, contrary to
your advice in April (page 2.23). Maybe the directive to
choose "Auto” or “Pascal 11" applies to earlier
versions.
James W Patton
Littieton, Colo.

The version of ASCII Exprese [use around here
also says it's 4.20, but I swear | had to abandon the
lle local console option to get it to work on an
enhanced lle. From your information, it would
appear the publisher has altered the program to
support both old and new Iles without changing the
version number.

One would think that software companies would
use a new version number when they alter software.
What's the sense of having version ID numbers in the
first place If you can't tell different versions apart
with them? Stll, one has to applaud the fact that at
least the publisher of ASCII Exprese appears to be
trying to keep the program up-to-date.

Dennis Doms, who wrote the answer to the April
letter, says to mention that there's one anomaly he
forgot to mention that appears even after you follow
the setup he recommended. It's that the cursor tends
to leap around the screen during protocol transfers
{this may also have been corrected in your version).
Dennis says this is disconcerting but doesn't seem
to affect the file transfer.

Finally, on the “undocumented feature” front:
Opew-Apple subscriber John Morse reports that
ASCII Exprese can operate at a maximum of 9600
baud with a Super Serial card — not 4800 baud. Just
select "8” from the “baud rate” menu. Although 8
doesn't actually appear as a selection on the menu,
AE will accept it and will proceed to run quite happily
at 9600 baud. This seems to work on both the DOS
and ProDOS versions.

ProDOS compilers
Any more news on ProDOS compilers?
Robert C. Heldreth
Rochester, N.Y.

While calling around in search of a ProDOS-based
Appiesoft compiler, we had an interesting conversation
with Tom Bumns at Roger Wagner Publishing, publish-
ers of the SpeedStar DOS 3.3-based Applesoft
compiler. Tom said that, at this time, he knew of no
commercially avallable ProDOS-based compiler for
Applesoft. He also told us Roger Wagner Publishing
had no plans to produce one, and gave us their
reasons.

1) ProDOS is so much faster than DOS 3.3 in disk
operations that use of ProDOS and BASIC.SYSTEM, in

itself, can speed up programs significantly. Therefore,
there is less incentive for the use of a compiler.

2) Compilers, at the time they were introduced,
were the easiest way of speeding up Applesoft
programs. Programming sophistication has now
produced machine language tools, which can be
accessed from Applesoft programs, that provide
much of the speed of compilers. In addition, these
“ampersand utilites” and “ProDOS added commands”
use much less memory than compiled code (DOS
3.3 Applesoft compiiers greatly expand programs as
they are compiled), are faster, and do not hamper
development (the Applesoft program can still be
debugged interactively, whereas use of a compiler
necessitates re-compllation after every change).

3) DOS 3.3 Applesoft compilers were not big
sellers. Given the additional reasons for not using a
compiler with ProDOS, a ProDOS compiler would
probably be a money-loser rather than money-
maker.

The only remaining feature a compiler provides is
protection against having the program LISTed and
modified by the user. Of course, half the world thinks
LIST protection is a bad idea, anyhow. At the moment
it appears the other half will have to come up with
some protection scheme other than compilation in
the ProDOS worlid.

Black tape

Why are the ventilation slots on the Disk Il covered

(from the inside) by black tape?

Harvey S. Picker
Hartford, Conn.

My guess is that The Disk Il doesn't generate
enough heat to need ventilation. Apple probably put
the slots there to make the appearance of the drives
match the Apple Il and then added the tape to keep
dust and dirt out.

Cheap color

| suppose everybody else in the world already
knows this, but on the off-chance that they don't: You
can use your color TV as a color monitor for the Apple
if you have a video cassette recorder. Simply run a
standard cable from the monitor jack on the Apple to
the video-in jack on your Beta or VHS.

| use a two-way splitter from Radio Shack so that |
can use both the monochrome monitor to read the
text and the TV to see the pretty colors. (I use this
double-combination for playing adventure games

with graphics, mostly.)
Douglas Cuff
St John's, Newfoundland

I didn’t know that. | have heard people complain in
the past that they couldn't record Apple colors on a
video cassette with this trick, so | assumed it wouldn't
work. Sounds like it does work, however, on at least
some machines.

People whose goal is to get full-color Apple screen
displays on video tape and who find this trick doesn't
work should try running the Apple’s video signal
through an RF modulator (the standard way of
getting Apple video to a TV) and then to the antenns
inputs on the VCR. Who knows, it might work.

Open-Apple 239

INPUT under EXEC

Here's a couple of tricks to liven up your readers’
DOS 3.3 EXEC routines. Type this as a three-ine text
file, and then EXEC it:

POKE 118,0 : POKE 43693,0 : INPUT “ENTER

FILE NAME: “;FS : POKE 43699,1
MONICO
POKE 118,80 : POKE 51,0 : PRINT CHRS(4); OPEN":F$

The first line puts EXEC in deferred mode so that
keyboard input can be requested by an EXEC routine
{this trick was destyibed by Bob Schmidt in Washington
Apple P March 1985).

The last line persuades DOS that a BASIC program
is running, so it will accept commands that normally
cannot be executed in immediate mode. These are
the same POKESs that are part of your instructions for
using DOS from assembly language in The DOSTalk
Scrapbook (pages 129-130).

I'm not sure that either of these is of earth-shaking
importance, but it's nice to know you can do them if
you want to.

On the subject of memory location 51, which
contains the prompt character for keyboard input—
inimmediate mode, it contains 221, the right bracket
prompt for Applesoft. In a Applesoft program, an
INPUT statement changes it to 128 (null). Both of
these make sense, but you'll get six (why six?), if you
enter the following:

NEW
10 PRINT PEEK (51)
RUN
Paul Nix
Summit, NJ.

Six is what ends up in the Y register when DOS 3.3
searches its command table for the word RUN—Y is
used as an index for other table-tookup operations.
DOS stores this six into the PROMPT location so that
the location will later reveal that a program is
executing. When the program ends and falls into
immediate mode, Applesoft will change PROMPT to
“}" (93, $5D) and Integer Basic will change it to >~
(62, $3E).

Why six? It just happened to be handy. A more
logical value would require more code but serve no
purpose other than aesthetics. If you run your test
program under ProDOS youll find a zero there.
Address sorting

| operate a small business in which | reference all of
my customers by their street address. | write all of my
software in Applesoft and have begun to expand the
versatility of my programs but have a question about
how to sort strings that contain both numbers and
characters, such as 123 Main Street or 456 Main
Street, and so on.

There are many sorting routines (both machine
language and BASIC) that | can use for the actual
sorting but my efforts to manipulate the street
address string to sort the street name alphabetically
and the house numbers in ascending order has not
been successful.

Would you please discuss the most efficient way to
accomplish this?

George Rolla

Redwood Clty, Calif

The basic problem here seems to be that you want
to end up with your customers sorted by street in
ascending house order. This would be an excellent
sort for making deliveries, for example.

2.40 Open-Apple

The only easy way Dennis and | can figure out to
do this is to keep the house numbers and the streets
in different strings. Combine the strings when you
want to print someone’s address with something
like PRINTN(I); ™ " S$(1).

While this may sound like a lot of trouble, trying to
implement a sort routine that can recognize and
compensate for numerical values in a string that is
being sorted alphabetically (and vice versa) is going
to be a real job. Assuming you already have the
addresses in a string array, splitting them into a
numerical array and a string array shouldn't be too
complicated.

Once you have the numbers and names separated,
you can use just about any sorting technique to put
your database in house number order, then do a
“bubble” sort to order the street names. Dennis says
to use a bubble sort (normaily disdained for its sloth)
for the final sort because most faster sorting algo-
rithms, such as the shell sort, will scramble the first
sort while performing the second.

Double-res files

Recently | attempted to move some double-high
resolution pictures from DOS 3.3 to ProDOS using
CONVERT. The pictures came on the disk Apple
provided with its auxiliary-siot RGB color card. The
DOS 3.3 files were binary and 65 sectors long. The

Open-ipple
B EE—

s written, edited, published, and

© Copyright 1986 by

Tom Weishaar
Business Consultant Richard Barger
Technical Consuitant Dennis Doms
Circulation Manager Sally Taily

Most nghts reserved All programs pubiished in Open-Apple are
public domain and may be copied and distnbuted without charge
{most are available in the MAUG library on CompuServej. Apple user
roups and significant others may obtain permission o reprint articles
?rom time 10 time Dy specific written request Requests and other
editorial mater:al, including lefters to Uncle DOS, shouid be sent to

n-Apple
P.O. Box 7651
Overland Park, Kansas 66207 U.S.A.

ISSN 0885-4017 Published monthily since January 1985 World-wide
pnces in US dollars, armail delivery included at no additonal
charge) $24 for 1 year. $44 for 2 years: $60 for 3 years. All back issues
are currently available for $2 each. a bound, indexed edition of Volume
115 $14 95 Index mailed with the February issue Please send all
subscription-related correspx eto

n-Apple
P.O. Box 6331
Syracuse, N.Y. 13217 U.S.A.

Subscribers in Australia and New Zealand should send subscription
correspondence t0 Open-Ag’le‘ ¢/0 Cybernetic Research Ltd, 576
Malvern Road, Prahran, Vic. 3181, AUSTRALIA

n-Apple s available on disk for speech synthesizer users from
Speech Enterprises. PO Box 7986, Houston, Texas 77270 (713-461-
1666}

Unlike most commerical software, Open-Apple is soid in an
unprotected format for your convenience You are encourgaged t0
make back-up archival copies o easy-10-read enlarged copres for
your own use without charge You may also copy Open-Apple for
distnbution 10 others. The distribution fee s 15 cents per page per
copy distributed
wog NTY AND LIMITATION OF LIABRITY. | warrant that most of
the information in Open-Appie 1s usefud and correct, aithough drivel
and mistakes are included from time to time. usually unintentionally
Unsatisified subscribers may return issues within 180 days of delivery
for a full refund Please include a note fom your parents or chiigren
confirming that all archival copies have been destroyed. The unfullilied
portion of any paid subscription will be refunded on request MY
LIABILTY FOR ERRORS AND OMISSIONS IS LIMITED TO THIS
PUBLICATION'S PURCHASE PRICE In no case shall | or my
contributors be liable for any incidental or consequentiai damages.
nor for any damages in excess of the fees paid by a subscriber

n-Apple is neither affiliated with nor responsibie for the debts of
Apple Computer, Inc. “tinaja questng s a trademark of Don
Lancaster

Source Mail: TCF238

CompuServe: 70120,202

process seemed simple but the transfer attempt
resulted only in a hung system with a bunch of trash
on the screen and a few clicks of the lle speaker just
before that. As usual, Apple’s no help.

1 am also seeking the locations to poke, or an &
routine, that would allow muiti-color text on my RGB
screen when using ProDOS. The only thing | have is
for DOS 3.3 and it doesn't work with ProDOS.

Steve Perry
Santa Ana, Calif.

Dennis tried CONVERT on Apple’s RGB disk and
experienced the same problem, then tracked down
the cause. He says if he worked for Apple, he would
be embarrassed to acknowledge the problem, too.

Whoever wrote the DOS 3.3 double-high resolution
demos used a non-standard file format for the binary
files holding the pictures. Specifically, the four bytes
at the beginning of the first sector of the files, which
are supposed to hold a binary file’s loading address
and length ("A” and “L") values, have been omitted.
The files contain only the data for the picture. The
programs on the disk use &LOAD and &SAVE com-
mands to access these non-standard files.

There is nothing in the DOS catalog to indicate to
CONVERT that the file is abnormal. (The programmer
could have given these files one of the normally
unused DOS 3.3 file types, for example.) Therefore,
CONVERT tries to transfer the file using the information
in the file. The file PIE.CHART appears to have a
loading address of $8080 and a length of $8080
bytes. CONVERT gags on the file after copying 45
blocks.

CONVERT ends up by flipping through all the
softswitches in page $C000 (hence the odd video
and speaker effects you noted). The fact that CONVERT
crashs like this rather than reporting an error does
not give much reassurance about CONVERT's
performance.

Copy Il Plus 6.0 can make the conversion without
bombing; however, the starting address and file
length are still taken from the erroneous data within
the file—just as you would expect. The first four
bytes of the converted picture are missing and all
other bytes are shifted four positions forward. Not a
pretty result.

Apple’s programmer saved one sector of disk
space per file by using the special storage technique.
There are five of these files on the disk, a net saving of
five sectors (the disk has twelve free sectors left). The
same effect could have been achieved by leaving off
the last four bytes of the file, which don't appear on
the high-resolution screen, anyhow. The price of this
misdirected file-size efficency is the inability to
convert the files back and forth between DOS 3.3 and
ProDOS. And this is supposed to be Apple’s best
example of how to program double-resolution
graphics?

As far as | can determine, Apple has never officially
defined how double-resolution files should be stored
under DOS 3.3; all we have is this rather poor
example. Beagle Bros spumed it and developed a
format whereby double-res graphics are stored in
two files — the main-memory portion in a binary file
named, for example, PICTURE; the aux-memory
portion in a file named PICTURE.AUX. Such files are
readily transportable between DOS 3.3 and ProDOS.

While Apple has been no help with DOS 3.3,
ProDOS technical note #13 defines a standard for
ProDOS double-high-resolution graphics files. This
standard uses a special file type called FOTOFILE
(type $08), which was originally defined for the
Apple Ill. FOTOFILEs have the aux-memory portion

Yol. 2, No. 5

of the image in the first $2000 bytes of the file and
the main-memory portion in the final $2000 bytes.
In addition, byte $78 of the file holds a code that tells
what kind of file it is. Here's a list of the codes:

FOTOFILE graphics mode codes
(found at file.start+120 or $78)

page 1 page 2
280 x 192 std high-resolution] 4
280 x 192 “’limited color’’ 1 5
560 x 192 dbl-high black/uhite 2 3
149 x 192 dbl-high 16-color 3 ?

FOTOFILEs make a poor choiceNor a standard,
however. On the Apple 11, there is no such thing as a
“page 2" double-high-resolution picture, so codes 5,
6, and 7 apply to the Apple I only. The same goes
for type 1 280 x 192 “limited color,” which never
appears in Apple Il documentation.

On the other hand, Apple Il RGB supports a "mixed
560/140" mode, for which no FOTOFILE code has
been defined. This mode is available with RGB
equipment only.

Another problem with the FOTOFILE standard is
that the graphics mode code is stored within the aux-
memory portion of the file for double-resolution
graphics, but in the main-memory portion for standard
high-resolution files. If the main-memory portion of
the graphic was at the beginning of the file, with the
graphic-mode code embedded within it, you could
load that portion directly into memory, then look at
the code to see if there was an additional portion to
go into aux-memory. Here's a simple example of
how such a file would be loaded under ProDOS,
using a file type I just made up and called PIC:

1000 POKE 43153,0 : REM B@STORE on

1005 POKE 43239,0 : REM HIRES on

1010 POKE 49236,2 : REM PAGEZ off

1020 PRINT D$;"BLORD pathname, AB152, L8192, TPIC”
1030 T=PEEK(B8192+120) : REM get moce code

1040 IF T=(std res graghic cocoe) THEN 1080

1050 POKE 439237,2 : REM PAGEZ on

106@ PRINT D$;"BLCAD pathname, AB192, LB192, 88192,

10"
1070 POKE 49236,@ : REM PAGE2 off
1080 ON T GOTO : REM flip RGB switches for mode

Using FOTOFILES, you either have to load the first
part of the file in main-memory and then move or
reload it into aux-memory if the picture turns out to
be double-resolution, or you have to load the first
part into aux-memory and move it to main if it tums
out to be single-resolution. Come on, Apple —how
about a new file type just for Apple Il graphic files?

Apple’s treatment of double-high resolution, in
terms of documentation and support, has been
shoddy since day L (One of many examples—
memory maps in the Apple RGB manual all show a
high-res graphics page 2 in auxiliary memory, even
though there isn't such a thing.) There is no more
obscure arena in the Apple Il world than double-
resolution. Apple has indicated that advanced color
graphics will be a part of the next Apple II—let’s
hope they get their act together better this time or
programmers will be too confused to use them.

Oh, and speaking of confusion, does your question
about muiti-colored text refer to the green-amber-
blue-white choice for text screens; to 40-column, 16-
color foreground, 16-color background text; or to
colored text on the double-high-resolution screen?
Actually it makes little difference — the switches for
all these things are the same whether you're using
ProDOS or DOS 3.3. For everything | know about
RGB see the May 1985 Open-Apple, pages 35 and
36, and the July 1985 issue, page 54.

